On the decomposition of hereditary graph classes

Dewi Sintiari

November 20th, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Hereditary class of graphs

Hereditary property: a graph property which holds for a graph and is inherited by all its *induced* subgraphs.

Induced subgraph: a subgraph H obtained from a graph G by *deleting* some vertices of G. (*We say that* G *contains* H)

Figure: A graph, an induced subgraph, and a non-induced subgraph

Definition

A class of graphs is *hereditary* if it is **closed** under taking induced subgraphs.

Hereditary class of graphs

Some examples

- planar graphs;
- bipartite graphs;
- graphs of bounded degree;
- forests;
- chordal graphs;
- perfect graphs;
- line graphs;
- graphs that contain no clique of size 3;
- graphs that contain no even hole (i.e. chordless cycle);

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hereditary class of graphs

Any hereditary class can be characterized as the class of graphs that do not contain any graph in \mathcal{F} for some family \mathcal{F} .

- forests = $(C_3, C_4, C_5, C_6, C_7, ...)$ -free
- bipartite graphs = (C_3, C_5, C_7, \dots) -free
- chordal graphs = $(C_4, C_5, C_6, C_7, \dots)$ -free
- ▶ perfect graphs = $(C_3, \overline{C_3}, C_5, \overline{C_5}, C_7, \overline{C_7}, \dots)$ -free
- ▶ P₄-free graphs, (P₄, C₄)-free graphs, etc...

G is *F*-free if no induced subgraph of *G* is isomorphic to *F*; and is \mathcal{F} -free if no induced subgraph of *G* is isomorphic to each $F \in \mathcal{F}$.

Remark: \mathcal{F} can be a finite/infinite family.

Why forbidding induced subgraphs?

(Possibly) naive answers...

- When I started my PhD, my supervisor told me to do so;
- There are many possibilities to forbid induced subgraphs, so this could lead to publishing many papers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Why forbidding induced subgraphs?

(Possibly) naive answers...

- When I started my PhD, my supervisor told me to do so;
- There are many possibilities to forbid induced subgraphs, so this could lead to publishing many papers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Why forbidding induced subgraphs?

In real world, many problems can be formulated as graphs (which are hereditary):

- vertices represent objects;
- edges represent constraints

Main concerns:

- How classes of graphs closed under taking induced subgraphs can be described in the most general possible way?
- What properties can be proved about them?

Many NP-Hard problems (*e.g. coloring, maximum independent set*) become easy when some configurations are forbidden. (*e.g. forests, chordal graphs, perfect graphs*).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Graph decomposition

Definition (Decomposition theorem in general...)

A decomposition theorem for a class C says that every object of C either belongs to some well-understood *basic* class, or it can be broken into smaller pieces according to some well-described rules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example in mathematics: "The fundamental theorem of arithmetic"

Graph decomposition

Definition (Decomposition theorem in general...)

A decomposition theorem for a class C says that every object of C either belongs to some well-understood *basic* class, or it can be broken into smaller pieces according to some well-described rules.

Example in mathematics: "The fundamental theorem of arithmetic"

For a class of graphs C, we define a set of basic graphs C_0 and a list of graph *decomposition* operations \mathcal{L} , s.t. if $G \in C$:

- ▶ either $G \in C_0$; or
- G can be broken down to smaller graphs G' and G'' using an operation in \mathcal{L}

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Graph decomposition

Definition (Decomposition theorem in general...)

A decomposition theorem for a class C says that every object of C either belongs to some well-understood *basic* class, or it can be broken into smaller pieces according to some well-described rules.

Example in mathematics: "The fundamental theorem of arithmetic"

For a class of graphs C, we define a set of basic graphs C_0 and a list of graph *decomposition* operations \mathcal{L} , s.t. if $G \in C$:

- ▶ either $G \in C_0$; or
- G can be broken down to smaller graphs G' and G'' using an operation in \mathcal{L}
- If furthermore, every G can be built from smaller graphs G' and G" belonging to C using a compositions operation L' (the "reverse" operations of L, then it is a structure theorem).

Example of decomposition theorem

 $S \subsetneq V(G)$ is a cutset of a connected graph G if $G \setminus S$ induced a disconnected graph.

Clique cutset decomposition (Tarjan, 1985)

Example of decomposition theorem

 $S \subsetneq V(G)$ is a cutset of a connected graph G if $G \setminus S$ induced a disconnected graph.

Clique cutset decomposition (Tarjan, 1985)

Decomposition of chordal graphs (i.e. C_k -free, for all $k \ge 4$) Theorem (Dirac, 1961)

If G is a chordal graph, then either G is a complete graph, or G admits a clique-cutset.

Graph decomposition for algorithm (1)

Graph recognition algorithm

Given a class of graphs C. How do we decide if a given input graph G is in C?

- 1. Get a decomposition theorem of C;
- 2. decompose G until no decomposition is possible;
- 3. check if all graphs obtained from the decomposition are basic graphs of \mathcal{C} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Graph decomposition for algorithm (1)

Graph recognition algorithm

Given a class of graphs C. How do we decide if a given input graph G is in C?

- 1. Get a decomposition theorem of C;
- 2. decompose G until no decomposition is possible;
- 3. check if all graphs obtained from the decomposition are basic graphs of \mathcal{C} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

How do we ensure that the algorithm is in poly-time?

- decomposition procedure takes poly-time
- the prescribed compositions are class-preserving
- the number of graphs to check is polynomial

Graph decomposition for algorithm (2)

Applied to combinatorial problems

- Vertex coloring: assignment of (as minimum possible) colors to the vertices, no adjacent vertices receive the same color
- Maximum independent set: finding set of pairwise non-adjacent vertices with maximum cardinality
- Maximum clique: finding set of pairwise adjacent vertices with maximum cardinality

coloring chromatic number : χ

max independent set independent set number: α

 $\begin{array}{c} {\rm maximum\ clique}\\ {\rm clique\ number\ :\ } \omega \end{array}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Graph decomposition for algorithm (3)

The graph-decomposition based algorithm is usually done through the divide-and-conquer approach.

Graph decomposition for algorithm (4)

Clique cutset decomposition (Tarjan, 1985)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Graph decomposition for algorithm (4)

Clique cutset decomposition (Tarjan, 1985)

- Graph recognition is in poly-time.
- Maximum clique, coloring, and max independent set problems can be solved efficiently using the divide-and-conquer approach.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

We can also decompose through edge-cutset

1-join

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We can also decompose through edge-cutset

1-join

Example:

Theorem (Corneil, et al, 1981, and many others...) If G is P_4 -free (i.e. cograph), then either G is K_1 , or G can be obtained from two graphs G_1 and G_2 by either a disjoint union, or a 1-join.

Maximum clique, coloring, and max independent set are poly-time.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Perfect graphs and Berge graphs

G is perfect if for every induced subgraph *H* of *G*, $\chi(H) = \omega(H)$ Berge graphs: the class of $(C_k, \overline{C_k})$ -free with *k* is an odd number

Conjecture (Strong Perfect Graph Conjecture, Berge, 1961) The class of perfect graphs and the class of Berge graphs are equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Decomposition theorem of Berge graphs

Theorem (Chudnovsky, Robertson, Seymour, and Thomas 2002) Every Berge graph is basic, or has a 2-join, a complement 2-join, a homogeneous pair or a balanced skew partition.

Basic graphs: bipartite, complement of bipartite, line graph of bipartite, complement of line graph of bipartite, and doubled graphs.

Decomposition theorem of Berge graphs

Theorem (Chudnovsky, Robertson, Seymour, and Thomas 2002) Every Berge graph is basic, or has a 2-join, a complement 2-join, a homogeneous pair or a balanced skew partition.

Basic graphs: bipartite, complement of bipartite, line graph of bipartite, complement of line graph of bipartite, and doubled graphs.

Figure: Bipartite graph

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Decomposition theorem of Berge graphs

Theorem (Chudnovsky, Robertson, Seymour, and Thomas 2002) Every Berge graph is basic, or has a 2-join, a complement 2-join, a homogeneous pair or a balanced skew partition.

Basic graphs: bipartite, complement of bipartite, line graph of bipartite, complement of line graph of bipartite, and doubled graphs.

Figure: 2-join

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Decomposition theorem of Berge graphs

Theorem (Chudnovsky, Robertson, Seymour, and Thomas 2002)

Every Berge graph is basic, or has a 2-join, a complement 2-join, a homogeneous pair or a balanced skew partition.

Basic graphs: bipartite, complement of bipartite, line graph of bipartite, complement of line graph of bipartite, and doubled graphs.

Figure: Homogeneous pair (A, B)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Decomposition theorem of Berge graphs

Theorem (Chudnovsky, Robertson, Seymour, and Thomas 2002)

Every Berge graph is basic, or has a 2-join, a complement 2-join, a homogeneous pair or a balanced skew partition.

Basic graphs: bipartite, complement of bipartite, line graph of bipartite, complement of line graph of bipartite, and doubled graphs.

Figure: Skew partition (X, Y)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (Strong Perfect Graph Theorem, proved by Chudnovsky, Robertson, Seymour, and Thomas, 2012)

A graph is perfect if and only if it is a Berge graph.

Proof steps:

- 1. Theorem 1: Every Berge graphs is either basic or admits a decomposition.
- 2. Theorem 2: Every basic graph is perfect.
- 3. Theorem 3: If G is minimally imperfect, then G does not admit any of the decomposition of Thm 1.

Coloring and max ind set are in poly-time for perfect graphs, but no combinatorial use of the decomposition theorem.

Even-hole-free graphs

Decomposition theorem

Theorem (Conforti, Cornuéjols, Kapoor, and Vušković, 2002, then improved by da Silva and Vušković, 2013)

A connected even-hole-free graph (actually proved for a superclass) is either basic or it has a 2-join or a star cutset.

Figure: Basic graphs

Even-hole-free graphs

Decomposition theorem

Theorem (Conforti, Cornuéjols, Kapoor, and Vušković, 2002, then improved by da Silva and Vušković, 2013)

A connected even-hole-free graph (actually proved for a superclass) is either basic or it has a 2-join or a star cutset.

Figure: 2-join

Even-hole-free graphs

Decomposition theorem

Theorem (Conforti, Cornuéjols, Kapoor, and Vušković, 2002, then improved by da Silva and Vušković, 2013)

A connected even-hole-free graph (actually proved for a superclass) is either basic or it has a 2-join or a star cutset.

Figure: Star cutset

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ●

Nevertheless, the combinatorial problems are still **open** for this class!

The decomposition theorem is applied for the recognition algorithm, but cannot be applied for solving the coloring / max ind set problems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\Delta(G)$: maximum degree among V(G)

The basic graphs:

Cutsets: clique cutset and proper separator

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Aboulker, Adler, Kim, Sintiari, Trotignon (2020)) Let G be a subcubic even-hole-free graph. Then one of the following holds:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ► G is a basic graph;
- ▶ G has a clique separator of size at most 2;
- ▶ G has a proper separator.

Theorem (Aboulker, Adler, Kim, Sintiari, Trotignon (2020)) Let G be a subcubic even-hole-free graph. Then one of the following holds:

- ► G is a basic graph;
- G has a clique separator of size at most 2;
- G has a proper separator.

Sketch of proof.

- in each step, we "eliminate" a basic graph H
- ► assume that G ∈ C contains H, prove that either G = H, or G admits a "good separator", or G contains an obstruction
- repeat until all basic graphs are considered

Theorem (Aboulker, Adler, Kim, Sintiari, Trotignon (2020))

Let G be a subcubic even-hole-free graph. Then one of the following holds:

- ► G is a basic graph;
- G has a clique separator of size at most 2;
- G has a proper separator.

Implication: subcubic even-hole-free graphs have constant "treewidth" leading to poly-time complexity for the aforementioned combinatorial problems (coloring, max ind set).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Decomposing subcubic even-hole-free graphs (*an example*)

Figure: Decomposition of a non-basic subcubic even-hole-free graphs

(日) (四) (日) (日) (日)

Figure: Decomposition of a non-basic subcubic even-hole-free graphs

(日) (四) (日) (日) (日)

Figure: Decomposition of a non-basic subcubic even-hole-free graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Decomposition of a non-basic subcubic even-hole-free graphs

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

Figure: Decomposition of a non-basic subcubic even-hole-free graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Decomposition of a non-basic subcubic even-hole-free graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: Decomposition of a non-basic subcubic even-hole-free graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Figure: Proper gluing operations to construct a (non-basic) subcubic EHF graphs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Figure: Proper gluing operations to construct a (non-basic) subcubic EHF graphs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Figure: Proper gluing operations to construct a (non-basic) subcubic EHF graphs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generalization

Conjecture

Let C be the class of even-hole-free graphs of maximum degree Δ . Then a decomposition theorem with a similar fashion exists for the class.

Implication: if this is true, this would lead to "treewidth bounded on Δ ", which means that many combinatorial problems are in poly-time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Generalization

Conjecture

Let C be the class of even-hole-free graphs of maximum degree Δ . Then a decomposition theorem with a similar fashion exists for the class.

Implication: if this is true, this would lead to "treewidth bounded on Δ ", which means that many combinatorial problems are in poly-time.

Theorem (Abrishami, Chudnovsky, and Vušković, 2020) For every $\Delta \ge 0$, there exists an integer k such that even-hole-free graphs with maximum degree at most Δ have treewidth at most k.

Implication: coloring and max ind set are polynomial (in k) for this class.

(Even hole, pyramid)-free graphs $\Delta = 4$

Theorem (Sintiari, Trotignon (2020))

Let G be an (even hole, pyramid)-free graph with $\Delta(G) \leq 4$. Then one of the following holds:

- ► G is a basic graph;
- G has a clique separator of size at most 3;
- G has a proper separator for C.

Figure: Basic graphs in the decomposition of the class

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Other works

We have seen:

- Chordal graphs: forbidding all holes
- Perfect graphs: forbidding odd holes and their complement
- Even-hole-free graphs: forbidding all even holes

What if we forbid all holes that are not not of length k (for some fixed k)?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 C_k = the class of graphs whose holes all of length k [with J. Horsfield, M. Preissmann, C. Robin, N. Trotignon, K. Vušković, and independently studied by L. Cook and P. Seymour]

What next?

- 1. Studying other hereditary graph classes (related to perfect graphs and even-hole-free graphs / or not related). There are still many things to explore!
- 2. Could we apply the decomposition theorem technique to solve graph labeling problems? Can we work on labeling on some hereditary graph classes?
- 3. Same question as (2) for metric dimension, Ramsey graphs, etc...

References

- 1. Perfect graphs: a survey (Nicolas Trotignon, 2015)
- 2. Even-hole-free graphs: a survey (Kristina Vušković, 2010)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ